For each of the following problems:

- Carefully observe what kind of integral it is. For example: "the work done by a vector field along a curve in 2 dimensions", "the integral of a scalar function over a surface in 3 dimensions," etc.
- List all the ways you know of handling such an integral. Then pick one (there might be multiple good approaches).
- Reduce the problem to single or iterated integral(s) with explicit upper and lower bounds (i.e. $\int_{?}^{?} \int_{?}^{?} \cdots$ instead of something like \iint_{S}). Don't compute the integral.
Question 1. $\iint_{S}\left\langle-x,-y, z^{3}\right\rangle \cdot \mathrm{d} \mathbf{S}$ where S is $z=\sqrt{x^{2}+y^{2}}, 1 \leq$ $z \leq 3$, oriented downwards.
Question 2. $\int_{C}\left(x^{2} y^{2} \mathrm{~d} x+x y \mathrm{~d} y\right)$ where C travels in a parabolic arc $y=x^{2}$ from $(0,0)$ to $(1,1)$, and then in a straight line to $(0,1)$, and then in a straight line back to $(0,0)$.
Question 3. $\iint_{S}\langle x, y, 5\rangle \cdot \mathrm{d} \mathbf{S}$ where S is the outwards-oriented boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$.
Question 4. $\int_{C}(\nabla \cdot\langle x, z, z y\rangle) \mathrm{d} s$ where C is the intersection of $z=4 x^{2}+y^{2}$ and $y=x^{2}$, inbetween the planes $x=0$ and $x=1$.

Question 5. $\iint_{S}\left(\nabla \times\left\langle e^{x y}, e^{x z}, x^{2} z\right\rangle\right) \cdot \mathrm{d} \mathbf{S}$ where S is $4 x^{2}+y^{2}+$ $4 z^{2}=4, y \geq 0$, and oriented in the positive y-direction.

Question 6. $\iint_{S}\langle z, y, x z\rangle \cdot \mathrm{d} \mathbf{S}$ where S is the ellipsoid $x^{2}+2 y^{2}+$ $3 z^{2}=4$, oriented inwards.
Question 7. $\int_{C}\left\langle x^{2} z, x y^{2}, z^{2}\right\rangle \cdot \mathrm{d} \mathbf{r}$ where C is the ellipse that is the intersection of $x+y+z=1$ and the cylinder $x^{2}+y^{2}=9$, oriented counterclockwise when viewed from above.

Question 8. $\int_{C}\left\langle z^{2}, x^{2}, y^{2}\right\rangle \cdot \mathrm{d} \mathbf{r}$ where C is the line segment from $(1,0,0)$ to $(4,1,2)$.

Question 9. $\iint_{S} \mathrm{~d} S$ where S is the portion of the surface $z=x y$ that is contained inside the cylinder $x^{2}+y^{2}=1$.
Question 10. $\int_{C}\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle \cdot \mathrm{d} \mathbf{r}$ where C is the polar curve $r=2+\cos (4 \theta), 0 \leq \theta \leq 2 \pi$.

Question 11. $\int_{C}\left\langle-x y^{2}, x^{2} y, e^{5 z}\right\rangle \cdot \mathrm{d} \mathbf{r}$ where C is parametrized by $\mathbf{r}(t)=\left\langle\cos t, \sin t, e^{t} \sin ^{3} t \cos ^{4} t\right\rangle, 0 \leq t \leq 2 \pi$.

Question 12. $\iiint_{E} \mathrm{~d} V$ where E is the region enclosed by the surface obtained by rotating the polar curve $r=\cos (2 \theta)$, $-\pi / 4 \leq \theta \leq \pi / 4$, around the y-axis.

